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In this paper the numerical solution of the radial Shrödinger equation via new proposed
symplectic-schemes is investigated. In particular, the radial Schödinger equation is trans-
formed into Hamiltonian canonical form and is solved via symplectic integrators. Based
on this approach, fifth-order methods are proposed. We compare these methods with well-
known existing symplectic methods. The numerical results show the efficiency of the pro-
posed method.
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1. Introduction

The approximate integration of Hamiltonian systems is of considerable importance
to areas such as molecular dynamics, mechanics, astro-physics and others. By long-time
integration of large systems it is possible to obtain better understanding of physical prop-
erties of the systems. It is well known that geometric integrators, such as symplectic
and reversible integrators, are superior compared with non-symplectic methods for the
integration of Hamiltonian systems [1]. The main characteristics of geometric integra-
tors (which give them superiority in comparison with non-symplectic integrators) are:
(1) preservation of the energy integral, (2) linear error growth and (3) correct qualitative
behavior.

The radial time-independent Schrödinger equation has the form

−1

2

d2q

dx2
+ V (x)q = Eq, (1)

where E is the energy eigenvalue, V (x) is the potential and q is the wavefunction.
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In [2] Liu et al. has transformed (1) into Hamiltonian canonical equations using
Legendre transformation. The Hamiltonian canonical equations are given below:


ṗ = −∂H

∂q
= −B(x)q,

q̇ = ∂H
∂p
= p,

(2)

where B(x) = 2[E − V (x)], E is the energy eigenvalue, V (x) is the potential, q is the
wavefunction and H the Hamiltonian function

H(q, p, x) = 1

2
p2 + 1

2
B(x)q2. (3)

Last decade some symplectic integrators have been developed. Ruth [3] first pub-
lished symplectic methods for problems of the form (3). Integrators of order three were
constructed by Ruth [3], integrators of order four were obtained by Candy and Rozmus
[4] and Forest and Ruth [5]. Yoshida [6] has constructed reversible symplectic integra-
tors of sixth and eighth order. Recently Tselios and Simos [7] have introduced low order
symplectic integrators for the numerical solution of (2). In this paper new symplectic
integrators of fifth order have been constructed. The new methods have been compared
with well-known symplectic integrators (see [2,6]). The paper is constructed as follows.
In section 2 basic theory on symplectic integrators is presented. The construction of
symplectic integrators is presented in section 3. The new proposed fifth order method is
developed in section 4. Finally, in section 5 numerical illustration of the new developed
method is presented.

2. Symplectic integrators

From [1] it is known that the characterization of a canonical transformation is done
by using matrix algebra or by using differential forms (2-form).

Definition 1 [1]. A mapping is symplectic if

LT JL = J, (4)

where L is the 2d-dimensional Jacobian matrix of the mapping and

J =
(

0d Id
−Id 0d

)
,

with Id and 0d denoting the unit and zero d-dimensional matrix.

Proposition 1 [1]. A transformation(
q

p

)
→

(
q∗
p∗

)



K. Tselios and T.E. Simos / Symplectic methods of fifth order for the numerical solution 57

is symplectic (2-form) if and only if

d∑
i=1

dq∗i ∧ dp∗i =
d∑
i=1

dqi ∧ dpi,

rewriting as dq∗ ∧ dp∗ = dq ∧ dp.

Our investigation on the construction of symplectic integrators is based on the pro-
cedure developed by Forest and Ruth [5], Yoshida [6], Liu et al. [2]:{

Pi = Pi−1 − cihBn+1/2Qi−1,

Qi = Qi−1 + dihPi,
i = 1, . . . , k, (5)

where Q0 = qn, P0 = pn, Bn+1/2 = B(xn + h/2), ci and di are free parameters and k is
the number of stages.

At the point xn+1 the solution is:

Qk = qn+1, Pk = pn+1.

The parameters ci and di have been obtained by Yoshida [6]:

exp
[
h(A+ B)] = k∏

i=1

exp(cihA) exp(dihB)+O
(
hn+1

)
, (6)

where k and n, are the number of stages and the order of method, respectively.

3. Construction of symplectic integrators

The determination of the coefficients ci , di is based on the expansion of the left-
hand side of (6) in powers of h,

S(h) = eh(A+B) = 1+ h(A+ B)+ 1

2
h2
(
A2 + AB + BA+ B2

)+ · · · .
Expanding the right-hand side of (6) it follows:

S̃(h)=
k∏
i=1

exp(cihA) exp(dihB)

= 1+ h
(

k∑
i=1

ciA+
k∑
i=1

diB

)

+ 1

2
h2

[(
k∑
i=1

ci

)2

A2 + 2
k∑
i=1

di

i∑
j=1

cjAB + 2
k∑
i=1

di

k∑
j=i+1

cjBA



58 K. Tselios and T.E. Simos / Symplectic methods of fifth order for the numerical solution

+
(

k∑
i=1

di

)2

B

]
+ · · · .

We want the two expressions to agree up to hn. The resulting equations for the co-
efficients ci, di are depended linearly and for fifth-order we have obtained 62 equations
(see for more details in [8]). Finally, the number of linearly independent equations is 14
(see below).

The transformation into a linearly independent system of equations, leads to the
following number of equations and the number of order conditions:

Order 1 2 3 4 5

Equations 2 3 5 8 14

4. Construction of the new fifth-order method

In this section we describe the development of the new proposed fifth-order
method. Based on the above mentioned theory the new method is going to be a seven-
stage method, of the form (5), i.e.,



P1 = pn − c1hB

(
xn + h

2

)
qn,

Q1 = qn + d1hP1,

P2 = P1 − c2hB

(
xn + h

2

)
Q1,

Q2 = Q1 + d2hP2,

P3 = P2 − c3hB

(
xn + h2

)
Q2,

Q3 = Q2 + d3hP3,

P4 = P3 − c4hB

(
xn + h

2

)
Q3,

Q4 = Q3 + d4hP4,

P5 = P4 − c5hB

(
xn + h

2

)
Q4,

Q5 = Q4 + d5hP5,

P6 = P5 − c6hB

(
xn + h2

)
Q5,

Q6 = Q5 + d6hP6,

pn+1 = P6 − c7hB

(
xn + h

2

)
Q6,

qn+1 = Q6 + d7hp
n+1.
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The linearly independent systems of fifth-order equations are:
Order 1.




D1,1 =
k∑
i=1

ci − 1,

D1,2 =
k∑
i=1

di − 1.

(7)

Order 2.

D2,1 =
k∑
i=1

di

i∑
j=1

cj − 1

2
. (8)

Order 3.




D3,1 =
k∑
i=1

ci

k∑
j=1

dj

k∑
l=j+1

cl − 1

6
,

D3,2 =
k∑
i=2

di

i∑
j=2

cj

j−1∑
l=1

dl − 1

6
.

(9)

Order 4.




D4,1 = 1

6

k∑
i=1

di

(
k∑

j=i+1

cj

)3

− 1

24
,

D4,2 = 1

6

k∑
i=2

ci

(
i−1∑
j=1

dj

)3

− 1

24
,

D4,3 =
k−2∑
i=1

di

k−1∑
j=i+1

cj

k−1∑
m=j

dm

k∑
t=m+1

ct − 1

24
.

(10)
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Order 5.




D5,1 = 1

24

k∑
i=1

di

(
k∑

j=i+1

cj

)4

− 1

120
,

D5,2 = 1

24

k∑
i=2

ci

(
i−1∑
j=1

dj

)4

− 1

120
,

D5,3 = 1

12

k∑
i=1

di

k∑
j=i
dj

(
i∑

m=1

cm

)3

+ 1

12

k∑
i=1

di

k∑
j=i+1

dj

(
i∑

m=1

cm

)3

− 1

120
,

D5,4 = 1

12

k∑
i=1

ci

k∑
j=i
cj

(
k∑

m=j
dj

)3

+ 1

12

k∑
i=1

ci

k∑
j=i+1

cj

(
k∑

m=j
dj

)3

− 1

120
,

D5,5 =
k−1∑
i=1

ci

k−1∑
j=i
dj

k∑
m=j+1

cm

k−1∑
n=m

dn

k∑
t=n+1

ct − 1

120
,

D5,6 =
k−1∑
i=1

di

k−1∑
j=i+1

cj

k∑
m=j

dm

k∑
n=m+1

cn

k∑
t=n
dt − 1

120
.

(11)

For fifth-order equations (7)–(11) should be zeroed, and for k = 7 (number of
stages) we have fourteen equations and fourteen parameters. This set of equations can
be solved numerically. Using the Newton method 46 solutions for fifth-order integrator
have been obtained (see for more details [8]).

Minimizing the sum of squares of the fourteen functions (7)–(11), using the
Levenberg–Marquardt method, the same solutions have been obtained.

For internal computations 40-digits of precision are used.
After check of all the 46 produced solutions we have found that the most efficient

one (i.e., the solution which gives the most accurate results), is the following:

c1 = 0.451565072043660566153676907844402592772,

c2 =−0.002625517726040550321216631834885218246,

c3 =−0.288746249091012820496917716870631916495,

c4 = 0.470372004342290132044659600386105293232,

c5 = 0.370446676335932732131165391352841937409,

c6 = 0.193479673253384564857895760894223168079,

c7 =−0.194491659158214624369263311772055856751,

d1 = 1.904232780508446387453331227588459749190,

d2 =−1.939586366441924605272004546461976654374,

d3 = 0.396076651023183028911297491501266854424,
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d4 = 0.513386810409069562674038105483497027676,

d5 =−2.967739460604547365263858264164298986768,

d6 = 0.004177409528669315739141675118047253200,

d7 = 3.089452175577103675758054310935004756651.

5. Numerical examples

The implementation of the new developed method is based on the shooting tech-
nique. The comparison of the new method with existing ones has taken place for two
potentials: (1) the harmonic oscillator and (2) the hydrogen atom.

5.1. The harmonic oscillator

The potential of the one-dimensional harmonic oscillator is given by

V (x) = 1

2
x2 (−∞ < x < +∞). (12)

For this potential the exact eigenvalues are given by the formula

En = n+ 1

2
(n = 0, 1, 2, . . .). (13)

In order to compute the eigenvalues, we take as boundary conditions

y(xmin) = 0, y(xmax) = 0, (14)

where xmin and xmax are respectively the left and right boundaries. We define N as a
positive integer and then the space xmax − xmin is divided into N equal intervals. The
length of each interval is equal to h = (xmax−xmin)/N and this denote that xn = xmin+nh
(n = 1, 2, . . . , N − 1). Then in order to calculate the eigenvalues, we use a symplectic
scheme and the shooting method.

The new seven-stages fifth-order symplectic integrators have been compared with
(i) the four-stages fourth-order and the eight-stages sixth-order symplectic methods ob-
tained by Yoshida [6],1 and (ii) the three-stages third-order symplectic methods [7].

In figure 1 we present the error graph for the 200, 210, 220, 230, 240, 250
states of eigenvalues, and the calculations are obtained in the intervals [−26.5, 26.5],
[−27.5, 27.5], [−28.5, 28.5], [−29.5, 29.5], [−30.5, 30.5], [−31.5, 31.5], respectively,
for h = 0.02.

1 From the eight-stages sixth-order of Yoshida’s methods we have selected for this comparison the one
that gives the better results. For this method we have extended the precision of the given digits for its
coefficients from 16 digits precision (that were proposed by Yoshida [6]) to 40 digits precision.
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Figure 1. Values of Err = − log10 |Ecalculated − Eanalytical| for the eigenvalues E200, E210, E220, E230,
E240, E250 of the harmonic oscillator. Methods used: (i) –♦–: Yoshida [6] symplectic-scheme method of
four stage-fourth order, (ii) –�–: Yoshida [6] symplectic-scheme method of eight stage–six order, (iii) –×–:
symplectic-scheme of three stage-third order [7], (iv) –✷–: new method with symplectic-scheme of seven

stage-fifth order.

5.2. The hydrogen atom

The radial wave function is determined by one-dimensional Shrödinger equation
of the form

ÿ(r)+
(

2E + 2

r
− l(l + 1)

r2

)
y(r) = 0, 0 � r < +∞, (15)

where l = 0, 1, 2, . . . . In this paper we solve the eigenvalue problem for l = 0. The
boundary conditions are y(0) = 0 and y(+∞) = 0, and the exact eigenvalues are
calculated by the formula

En = − 1

2n2
(n = 1, 2, 3, . . .). (16)

The new seven-stages fifth-order symplectic integrators have been compared with
the same methods mentioned in the previous example.

In figure 2 we present the error graph for the 10, 20, 30, 40, 50, 60, 70, 80 states
of eigenvalues, and the calculations are obtained in the intervals [0, 300], [0, 1100],
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Figure 2. Values of Err = − log10 |Ecalculated − Eanalytical| for the eigenvalues E10, E20, . . . , E80 of the
hydrogen atom. Methods used: (i) –♦–: Yoshida [6] symplectic-scheme method of four stage-fourth order,
(ii) –�–: Yoshida [6] symplectic-scheme method of eight stage-six order, (iii) –×–: symplectic-scheme of

three stage-third order [7], (iv) –✷–: new method with symplectic-scheme of seven stage-fifth order.

[0, 300], [0, 1100], [0, 2200], [0, 3800], [0, 5800], [0, 8000], [0, 11500], [0, 15000], re-
spectively, for h = 1.
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